Archives par mot-clé : shapeoko

Making of: le chargeur Qi de Skywodd

Hello a tous!

Maintenant que Skywodd a publié son article sur le sujet, je peux enfin “en parler”! J’étais en effet resté discret à sa demande, mais j’ai effectivement pas mal bossé sur l’usinage des blocs de bois de son chargeur.

Bon, je passe sur les détails, vous avez bien compris qu’il s’agit d’un chargeur inductif permettant le transfert d’énergie sans contact.

Pour la petite histoire, dans ce système, c’est le récepteur (le tel) qui informe le chargeur de combien d’énergie il a besoin. Le tel communique avec le chargeur en modulant rapidement le courant de charge selon un protocole pas trop compliqué. Le chargeur répond en adaptant son fonctionnement aux besoins de l’objet chargé. Il n’y a pas une grande intelligence là dedans, le seul truc prévu est l’identification (pour que le chargeur évite de démarrer quand on pose un simple objet métallique non-Qi sur la surface) et la régulation du courant de charge. Bref.

J’ai donc eu pour mission d’usiner les blocs de chêne-qu’on-déconne-pas-avec. Skywodd m’a livré des fichiers DXF (contours 2D, un peu comme du SVG) obtenus à partir de ses pièces 3D. De mon coté j’ai chargé ces DXF dans CamBam pour en sortir des trajets d’outils.

Oui, le DXF n’est qu’un dessin, un peu comme le STL de l’impression 3D. Après, il reste encore à appliquer les paramètres de la machine et de l’outil (vitesse de coupe, diamètre de la fraise, épaisseur des passes, en impression 3D on parlerait plutôt de diamètre de buse, épaisseur des couches, et on utiliserait Slic3r).

En sortie on a donc du G-Code, qui sont des instructions de positionnement adaptées à une machine en particulier. J’insiste, je ne vous passerai pas mes g-codes, parce qu’ils vous seraient inutiles si votre machine n’a pas les mêmes moteurs, la même fraise, ou la même broche (perceuse).

Il faut savoir que la vitesse de coupe lors des déplacements dépend du matériau, de la vitesse de rotation de la broche, du nombre de dents et du diamètre de la fraise. Quand on fait les choses bien, on part de l’info “vitesse du point de coupe” (qui est le point du diamètre de la fraise qui se déplace pour arracher la matière). Selon le matériau, il faut avoir la bonne “vitesse de coupe”, qui est liée à la dureté de la matière. Ensuite, selon l’outil, on en déduit une vitesse d’avance et une vitesse de rotation, selon le diamètre de la fraise, et le type d’opération (rainurage, surfaçage, etc).

Vous remarquez une chose: je n’ai pas parlé de la puissance de la broche… En effet, on ne la choisit pas, selon le matériau et l’outil, on obtient des paramètres à utiliser, et il faut espérer que la broche est assez puissante pour les utiliser! Et je fais quoi si ma perceuse n’est pas assez puissante? Eh bien il n’y a pas le choix, il faut couper moins vite, mais c’est totalement sous-optimal, et le risque est de faire chauffer l’outil, par frottements précisément. Oui c’est fou: on use son outil si on ne coupe pas assez vite!

Et là arrive un autre problème: la rigidité de la machine: si on coupe trop vite, le risque que la machine se déforme est très important, et il ne faut pas se faire d’illusion: toute précision inférieure à 1/10 de mm est très difficile à atteindre, surtout avec une machine de type Shapeoko…

Ensuite il y a autre chose: la fragilité du matériau. Je n’ai eu aucun problème avec le bois, que l’on a fixé au bâti de la machine par 3 vis M6 à chaque fois, et qui est assez sympa à couper. En revanche, le plexi a été une autre histoire, comme l’a dit Skywodd: c’est un matériau fragile car cassant, plutôt dur, et plutôt fondant; donc c’est un défi, il faut couper vite sinon le plastique fond, mais pas trop profond à chaque passe sinon on force dessus et il casse. Je l’ai aussi nettement moins bien fixé, j’ai utilisé du scotch double face, et ce scotch résiste mal aux vibratons… Bilan, 5 pièces réussies, 3 à la benne!

Malgré tout, on arrive à faire des choses, mais il faut garder à l’esprit que l’usinage est une technique très exigeante, même quand on n’usine pas du métal. Dans tous les cas, tout nouvel outil, tout nouveau matériau demande de faire des essais de coupe pour trouver les bons paramètres machine. Dans le cas du métal c’est facile, on trouve des abaques, on sait que l’alu machin allié truc a besoin d’une vitesse d’avance de tartempion en rainurage, mais pour le bois, les différents types de plastique (PMMA, Acrylique,  Polycarbonate, PVC, Nylon, etc…) on ne trouve pas toujours (presque jamais) la bonne info.

A propos des types de fraise: Pour le bois, j’ai utilisé une fraise carbure “1 dent” de type défonceuse, diamètre 4mm. Ne surtout pas utiliser l’acier rapide (HSS) pour autre chose que pour le métal, il chauffe et s’use très rapidement. Au moins le carbure coupe moins (les dents en céramiques ont des rayons de courbure plus importants sur les arêtes) mais il supporte très bien les hautes températures. Pour le plexi j’ai utilisé une fraise deux dents hélicoïdale en carbure, toujours de 4mm. Ma broche Milwaukee a une pince qui accepte toutes les fraises avec des soies (axe de fixation) de 6mm.

Pour finir je remercie Skywodd de m’avoir fait faire ces opérations, qui ont amélioré mon expérience en usinage. Je le remercie de m’avoir passé un module pour mes propres essais.

Bon, assez parlé, place aux images!

 PS: le chêne utilisé est superbe une fois enduit d’huile d’olive. Elle rentre bien en quelques jours, et elle nourrit bien le bois qui prend une plus belle teinte.

Essais de vitesses de coupe
Essais de vitesses de coupe. Notez le “Pour essais” 🙂
En cours de découpe
En cours de découpe. Y’a des copeaux partout!
Deux blocs finis
Deux blocs finis. Il faudra faire les finitions au papier de verre…
Crash dans le plexi
Crash dans le plexi: la plaque s’est décollée du support.

Les objets du week end

Cette semaine a vu pas mal d’avancement sur plusieurs projets. Je n’ai pas exactement respecté le planning que je m’étais fixé dans le dernier article, mais ce n’est pas grave. J’avance sur mes projets au rythme de mon inspiration et de mes possibilités. Ce qui est plus important est de rester actif et d’avoir en vue l’ensemble des projets, pour être réactif et saisir les occasions d’avancer sur chacun.

Impression 3D

Cette semaine avait lieu le Web2Connect, un salon du blogging et des activités en ligne. Il y avait beaucoup de conférences, je n’en ai suivi que quelques unes (Bitcoin, Sécurité web, etc) et j’ai passé beaucoup de temps avec les gars de Dood Studio, qui exposaient leur imprimante 3D (un mix open source de Reprap, Ultimaker et Makerbot) dans le ‘village de l’innovation’ du W2C.

Dood Studios au W2C13
Dood Studios au W2C13

Nous avons donc sympathisé, et comme ils cherchaient des modèles à imprimer, je leur ai passé le STL de la turbine que j’avais déja tenté d’imprimer auparavant. Résultat moche, comme avant. Nous avons alors tenté de remodéliser une turbine sur solidworks, et miracle, l’impression est de bien meilleure qualité:

Différents STL
Différents STL. A gauche OpenSCAD, à droite Solidworks. PLA, buse 0,5mm.

Mystère… les objets sont quand même bien similaires à l’écran! Nous avons alors décidé de comparer les STL avec meshlab, et la vérité nous a alors sauté aux yeux:

 

Facettes OpenSCAD
Facettes OpenSCAD
Facettes SolidWorks
Facettes SolidWorks

Le STL pondu par OpenSCAD contient des triangles très fins et très allongés, qui partent tous d’un même point, ce qui perturbe slic3r. Le STL produit par Solidworks est formé de triangles bien plus triangulaires, qui “fonctionnent” clairement mieux !

Je n’ai pas trop d’espoir avec OpenSCAD… Il faudrait pouvoir appliquer une re-triangulation “optimale” de Delaunay à ces “mauvais” STL, mais la mise en pratique me dépasse totalement, tant pis! C’est dommage, car l’idée de modéliser grâce à un script me plaisait bien.

eShapeoko

La découpe, gravure et perçage de plaques de MDF, de 3 à 6mm, est maintenant une opération routinière ici: Je maîtrise (à peu près!) ce procédé 🙂 Les plaques sont fixées efficacement au martyr avec du scotch double face, je fais des coupes de 1 à 1.5mm de profondeur à une vitesse de 100 à 150 mm/minute, selon la propreté de la découpe que je souhaite.

Ma perceuse de 60 watts est toujours un peu faible, je compte sur le Père Noël pour me fournir une défonceuse Bosch de plus grande puissance (600 Watts, ce qui me donnera accès à la découpe d’aluminium).

La fraise est une deux dents, d’origine proxxon, en carbure. Diamètre 2mm.

Coté logiciel, j’utilise Inkscape pour importer des DXF ou créer des dessins vectoriels moi même, puis makercam pour calculer les trajets d’outils, et enfin Grbl Controller pour envoyer les ordres à la machine. Ces logiciels sont gratuits.

Carte de puissance

Première chose, après l’avoir modélisé, j’ai découpé et intégré un boitier en MDF pour la carte de puissance qui commande la machine. Celle ci contient en réalité uniquement les modules Pololu et beaucoup de connectique! La machine est maintenant alimentée en 24V, ce qui me permet des déplacements plus rapides (jusqu’à 3000 mm/min sur X et Y au lieu de 2200, et jusqu’à 200mm/min au lieu de 150 sur Z). L’arduino de commande est toujours “en l’air” mais cela ne devrait pas durer 🙂

Modélisation et résultat
Modélisation et résultat
La carte électronique en place
La carte électronique en place

L’assemblage utilise des écrous logés dans des fraisages dans l’épaisseur du MDF.

Adaptateur d’aspirateur

J’ai trouvé un flexible qui me permet d’aspirer la poussière en temps réel. C’est plus propre et plus pratique! Par contre ce flexible est beaucoup plus fin (18mm) que le tube de l’aspi (35mm). Dans un esprit DIY, plutôt que d’utiliser du scotch (ce qui immobilise l’aspirateur) ou d’acheter un truc, j’ai découpé des trous de diamètres progressifs (18-25-30-35), que j’ai assemblé avec 4 grandes vis M3. Les vis qui dépassent servent à maintenir le tube de l’aspirateur sans avoir besoin de scotch! C’est vachement compliqué pour la fonction, mais ça fait le boulot et c’était sympa à fabriquer!

Cône d'adaptation en 6 couches
Cône d’adaptation en 6 couches

Banc d’équilibrage

Les micro-turbines que je prépare vont tourner à très grande vitesse. Et donc, auront besoin d’être très bien équilibrées. Un balourd entraînerait des vibrations, qui auraient des effets néfastes : bruit, usure des roulements (qui seront mis à rude épreuve par les températures). En me promenant sur le web à la recherche de systèmes d’équilibrages, j’ai trouvé un site chinois qui vend plein de ces appareils. Voici deux exemples qui ont été une “révélation” pour moi:

Système d'équilibrage
Système d’équilibrage
Détails du palier
Détails du palier

Ces photos décrivent tout ce que j’avais besoin de savoir. Il y a un entrainement par courroie souple, une mesure de la vitesse de rotation, un palier à roulements de chaque coté, et une mesure de vibration sur le palier, qui peut être faite avec un accéléromètre. L’objet à mesurer peut être déposé très facilement entre les roulements quel que soit son diamètre, et maintenu avec un troisième galet; ce qui m’enlève de la tête le problème du palier à simple roulement que j’imaginais. Bref, j’étais à coté de la plaque, et voilà qu’on m’y remet!

Une telle machine (ou au moins un proto) n’est pas très difficile à imaginer et à concevoir avec ma machine. En quelques heures de modélisation et de réalisation, j’ai une petite machine pour le genre de turbines que je vais utiliser. Voici quelques étapes de la réalisation:

Détails du palier
Détails du palier

 

Autre vue
Autre vue
Fixation de la roulette supérieure
Fixation de la roulette supérieure
Assemblage final
Assemblage presque final (à droite, avec la roue imprimée)

Les roulements 3x4x8mm sont de récupération dans divers ventilateurs de CPU, et les rondelles de 1mm en laiton sont fabriquées maison par découpe dans un tube laiton de 4mm extérieur attaqué au coupe-tube, puis limées à la bonne épaisseur.

Nous voila donc en bon chemin sur la réalisation des turbines, plastique ou métalliques. Les étapes suivantes seront l’entrainement par courroie et la mesure d’accélération/vitesse, mais nous n’en sommes pas encore là!

Ce qui n’a pas avancé

Electronique et radio
J’y reviendrai dans un article pour demain, sinon celui ci va devenir trop long.

Buses reprap
le mini-tour n’était pas disponible. Normalement je pourrai avancer ce soir

arduino
Il est commandé (auprès d’un vendeur ebay français), et a été envoyé rapidement, mais je n’ai pas de nouvelles. Je vais relancer tout ça…

[Projet] Ma future CNC / imprimante 3D

Bon, les circuits pour le module NFC sont partis chez SeeedStudio, merci à eux pour leur efficacité et leur bon service: ils se rappellent encore qu’ils ont oublié de me livrer un truc il y a un an, et vont me l’ajouter gratos à ma commande!

En attendant, j’ai un peu de temps libre. Dans les transports, au lieu de jouer à Kicad, je vous pouvoir avancer la rédaction de mon guide pour débuter en électronique, et je vais aussi démarrer mon grand projet de fond, celui qui donnera le sens à la vie, à l’univers, et au reste.

Je vais me monter une imprimante 3D.

Non, une CNC.

Non, en fait, j’arrive pas à choisir.

Donc ce sera les deux.

Je vais prendre une eShapeoko. C’est une plate forme peu chère, très robuste, et assez universelle. Vu sa construction, je n’aurai pas de difficulté à la reconvertir à l’envie, en CNC ou en imprimante 3D, je n’aurai qu’à remplacer la “broche” par un extrudeur, et ajouter un hot plate.

Je me fais pas d’illusions, j’ai vu plein de gens à l’Electrolab passer leur soirées sur les réglages, je sais qu’il y aura beaucoup de travail.

Mais bon, je me dis qu’avec mes ambitions de bricolage, avoir un moyen de production rapide à la maison n’est pas un luxe. Je vais choisir toutes les options de la eShapeoko qui garantissent le maximum de robustesse, avec l’objectif d’usiner du bois (medium) et peut être de l’aluminium (même si c’est lent).

Je compte aussi la mettre à disposition de mes amis makers qui auraient des besoin d’impression 3D. On verra quand ce sera en “production”, mais ça me plairait de filer un coup de main aux potes.

Voici ce que je vais prendre dès que j’aurai reçu mon sponsoring d’anniversaire (:D) :

  • kit eshapeoko avec options: double axe x, double drive y, longueur étendue, perçages nema23
  • 4 moteurs nema23
  • driver moteurs, 1 arduino pour grbl
  • Peut être que j’utiliserai un raspberry pi pour le pilotage.
  • pour la broche, je sais pas encore. J’ai une petite perçeuse qui doit aller pour le bois avec une alim suffisante.
  • une table de travail de 50×60 en bois épais, avec 4 pieds en cornières acier, et des étagères intermédiaires pour ranger les accessoires
  • un capot en plexi pour éviter de mettre de la poussière partout. Et un adaptateur pour l’aspirateur…

Ca me permettra de découper et percer des plaques de MDF, c’est l’objectif numéro 1.

Ensuite on passera à l’objectif numéro 2, l’impression 3D, ça me demandera d’investir dans différents accessoires:

  • hotplate
  • extrudeur adaptable à l’emplacement de la broche. Là, je sais que je pourrai compter sur les copains de l’Electrolab.

Bref, tout un programme!
J’ai déja des tonnes d’idées supplémentaires: broche plus puissante pour travailler l’alu, bloc de démultiplication pour améliorer la résolution des déplacements. Il m’en viendra d’autres!

Bien entendu, je décrirai ici l’avancement de mon projet. Au boulot!