5
oct

Impression 3D de précision

Après m’être amusé avec des micro turbines, je m’étais amusé à modéliser une turbine sur openscad. J’y ai passé pas mal de temps, et le rendu 3D était devenu très correct. Vous pouvez retrouver le fichier scad de ce projet ici: turbine.scad

Maintenant que je suis assez proche de la réalisation de mon imprimante 3D, je me suis intéressé à la possibilité d’imprimer réellement cette turbine en 3D.

Jennyfer de l’Electrolab est une spécialiste de l’impression 3D, dont vous entendrez plus parler dans les mois à venir. Elle maîtrise vraiment sa machine et les processus d’impression, de la conception à la réalisation. Son imprimante personnelle n’est plus un jouet, mais une machine fiable et fonctionnelle qui a tourné en continu pendant un mois sans nécessiter aucun re-réglage, et fait maintenant concurrence à Stratasys (pour un prix largement moins élevé).

Après quelques discussions, elle m’a proposé d’imprimer ma mini turbine, ce qui est à la fois une grande chance pour moi, car je peux réaliser un proto sur une machine excellente, et pour elle c’est un défi, car ma pièce est vraiment petite et elle peut tester sa machine dans des conditions pas faciles.

J’ai appris au passage quelques informations sur la modélisation en vue de l’impression.

Contrairement à ce que beaucoup de gens pensent,il ne s’agit pas simplement de concevoir un objet arbitraire et de l’imprimer comme un document word. En poursuivant cette idée, il y aura beaucoup de déceptions. En effet, le processus d’impression 3D doit être envisagé dès le début de la conception. En particulier, pour cette pièce, il y a une particularité : elle est composée uniquement de murs fins, sans aucun volume rempli. Nous sommes donc en mode « remplissage 100% » ,et là, le slicer (logiciel qui découpe l’objet en tranches) ne sait pas remplir de zone plus étroite que la taille du filament.
Nous avons donc revu ensemble les épaisseurs des pales et des murs fins, pour qu’ils correspondent à un nombre entier de filaments, ici deux. Dans le cas contraire, le slicer n’aurait pas pu remplir entièrement le volume des murs, déja très fins, les filaments auraient été trop espacés (c’est à dire séparés par des espaces trop fins pour être remplis).

Voici le résultat de l’impression de l’objet tel que je l’ai modélisé. Les paramètres utilisés sur son imprimante étaient: filament ABS, couches de 0,2 mm, buse de 0,25 mm (pour un filament extrudé de 0,34 mm). Les murs et les pales de cet objet ne font que deux filaments de largeur, soit 0,68 mm, et le diamètre total de la roue atteint 26 mm:

Les objets conçus sous OpenSCAD

Les objets conçus sous OpenSCAD

Cette impression est peu satisfaisante. Je n’étais pas devant la machine pendant l’impression, mais Jennyfer m’a dit que la première couche avait été imprimée par sa chaine logicielle de façon un peu bizarre, en plusieurs fois, sans passages réguliers. Après avoir supposé que le STL généré par OpenSCAD avait quelques problèmes, j’ai trouvé la vraie raison. En modélisant mon objet sous openscad, j’ai voulu m’assurer que l’objet final avait bien l’épaisseur voulue et pas plus, donc les faces de la roue sont « rectifiées » et les dépassements des pales (disposées à 45 degrés) sont rabotés au passage. Si on observe avec précision le résultat, on voit que la surface des pales en contact avec la base d’impression est formée de petits triangles, alors que la zone des pales proche du moyeu a une épaisseur « nulle »:

La première couche est liée à ce biseautage

La première couche est liée à ce biseautage

En conséquence, le slicer a décidé que la couche zéro était uniquement composée du moyeu, du carter, et de ces petites zones triangulaires. Le corps des pales commence réellement à la couche suivante. De plus, il se trouve que le fichier STL généré par OpenSCAD a des problèmes de fermeture, on dit vulguairement qu’ « il n’est pas manifold », c’est à dire que la surface du solide comporte des trous. Heureusement, les logiciels de conception semblent capables de s’en sortir malgré ce problème en faisant des « réparations ».

Voici le chemin de l’extrudeur pour la couche zéro, modélisé par OpenSCAM:

G-code de la première couche

G-code de la première couche

Effectivement, la couche zéro est composée de petits triangles. A cause de cela, l’objet imprimé est de très mauvaise qualité, car la couche zéro est imparfaite, l’objet n’est pas stable.

Jennyfer a alors repris la conception de la roue dans son modeleur, mais a implémenté ce rabotage différemment, ce qui fait que ses essais d’impression sont bien mieux réussis. Remarquez que la couche zéro de ces pièces est bien plane:

La meme pièce, après reprise (couche zéro à gauche)

La meme pièce, après reprise (couche zéro à gauche)

Après montage des roulements (de ventilateur de PC) et insertion de l’axe (d’un chariot de lecteur DVD), je dois dire que le respect des côtes est quasi parfait, le roulement et l’axe se sont insérés en force mais sans problème, le frottement est suffisant pour maintenir fermement les éléments en place sans glissements. J’ai pu ensuite ajouter de petites rondelles en laiton (coupées au coupe-tube et finies à la lime), et couper un carter dans une canette de coca pour obtenir une turbine qui tourne vraiment bien dans le tube d’un aspirateur:

Les pièces prêtes à assembler

Les pièces prêtes à assembler

La turbine assemblée

La turbine assemblée

Il y a donc plusieurs leçons importantes à retenir:

J’ai donc appris beaucoup de choses en fabriquant ce petit objet, et je suis certain que tout ceci me fera gagner beaucoup de temps plus tard. Je réinsiste donc une fois de plus: sans modélisation adéquate, on ne peut pas utiliser une imprimante 3D et attendre des résultats de qualité. Toute la chaine d’outils doit être maitrisée, et il faut absolument modéliser sa pièce en pensant à son mode de réalisation.

Je vais donc remodéliser ma pièce pour corriger ces problèmes.

A+!